Undergraduate Programme and Module Handbook 2005-2006 (archived)
Module PHYS4161: ADVANCED ASTROPHYSICS
Department: PHYSICS
PHYS4161: ADVANCED ASTROPHYSICS
Type | Open | Level | 4 | Credits | 20 | Availability | Available in 2005/06 | Module Cap | None. | Location | Durham |
---|
Prerequisites
- Foundations of Physics 3 (PHYS3522), Astrophysics (PHYS3541).
Corequisites
- None.
Excluded Combination of Modules
- None.
Aims
- This module is designed primarily for students studying Department of Physics or Natural Sciences degree programmes.
- It builds on the Level 3 modules Foundations of Physics 3 (PHYS3522) and Astrophysics (PHYS3541) and provides a working knowledge of high energy astrophysics, galaxy formation and large scale structure of the universe and physical processes in the interstellar medium at an advanced level appropriate to Level 4 physics students.
Content
- The syllabus contains:
- High Energy Astrophysics: Theoretical and observational tools. Observed properties and classifications of active galactic nuclei. Unified model. Physical processes: Bremsstrahlung, Compton, synchroton.
- Galaxy Formation and Large-scale Structure: Linear fluctuations, growth rates, non-baryonic dark matter, power spectrum, cosmic microwave background. Galaxy clustering, redshift surveys. Non-linear evolution, top-hat model, scaling relations, hierarchical clustering. Confrontation with observations.
- Interstellar Medium: Composition, sources and sinks; gaseous nebulae: characteristics and spectra, ionisation properties, Saha equation, heating and cooling; forbidden line spectra: O+ and O2+ levels, collision strengths, [OIII] and electron temperature, [OII] and electron density; recombination lines; charge transfer reactions; molecular clouds: molecular reaction rates and ISM thermal balance, rotational transitions; grains.
Learning Outcomes
Subject-specific Knowledge:
- Having studied this module students will be able to describe physical processes involved in high energy astrophysical objects such as active galactic nuclei and accretion disks.
- They will be able to describe galaxy formation and the large scale structures of the universe.
- They will understand the physical and chemical processes that are important in the interstellar medium in terms of atomic and molecular physics.
Subject-specific Skills:
- In addition to the aqusition of subject knowledge, students will be able to apply knowledge of specialist topics in physics to the solution of advanced problems.
- They will know how to produce a well-structured solution, with clearly-explained reasoning and appropriate presentation.
Key Skills:
Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module
- Teaching will be by lectures and learning support sessions.
- The lectures provide the means to give a concise, focused presentation of the subject matter of the module.
- The lecture material will be explicitly linked to the contents of recommended textbooks for the module, thus making clear where students can begin private study.
- When appropriate, lectures will also be supported by the distribution of written material, or by information and relevant links on DUO.
- Regular problem exercises will give students the chance to develop their theoretical understanding and problem solving skills.
- Students will be able to obtain further help in their studies by approaching their lecturers, either after lectures or at mutually convenient times.
- Student performance will be summatively assessed through an examination and regular problem exercises.
- The examination and problem exercises will provide the means for students to demonstrate the acqusition of subject knowledge and the development of their problem- solving skills.
- The problem exercises and learning support sessions provide opportunities for feedback, for students to gauge their progress and for staff to monitor progress throughout the duration of the module.
Teaching Methods and Learning Hours
Activity | Number | Frequency | Duration | Total/Hours | |
---|---|---|---|---|---|
Lectures | 38 | 2 per week | 1 hour | 38 | |
Learning Support | 10 | 1 per fortnight | 1 hour | 10 | |
Preparation and Reading | 152 | ||||
Total | 200 |
Summative Assessment
Component: Examination | Component Weighting: 90% | ||
---|---|---|---|
Element | Length / duration | Element Weighting | Resit Opportunity |
one three-hour written examination | 100% | ||
Component: Problem Exercises | Component Weighting: 10% | ||
Element | Length / duration | Element Weighting | Resit Opportunity |
problem exercises | 100% |
Formative Assessment:
Learning support sessions and problems solved therein.
■ Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University