Durham University
Programme and Module Handbook

Undergraduate Programme and Module Handbook 2015-2016 (archived)

Module MATH3201: GEOMETRY III

Department: Mathematical Sciences

MATH3201: GEOMETRY III

Type Open Level 3 Credits 20 Availability Available in 2016/17 and alternate years thereafter Module Cap Location Durham

Prerequisites

  • Complex Analysis II (MATH2011) AND Analysis in Many Variables II (MATH2031) AND Algebra II (MATH2581).

Corequisites

  • None.

Excluded Combination of Modules

  • Geometry IV (MATH4141).

Aims

  • To give students a basic grounding in various aspects of plane geometry.
  • In particular, to elucidate different types of plane geometries and to show how these may be handled from a group theoretic viewpoint.

Content

  • The Euclidean group as group of isometries.
  • Conjugacy classes and discrete subgroups.
  • The affine group.
  • Proof that every collineation is affine.
  • Ceva and Menelaus Theorems.
  • Isometries and affine transformations of R3.
  • Rotations in terms of quaternions.
  • The Riemann sphere, stereographic projection, and Mobius transformations.
  • Inverse geometry.
  • Projective transformations.
  • Equivalence of various definitions of conics.
  • Classification and geometrical properties of conics.
  • Models of the hyperbolic plane.
  • Hyperbolic transformations.
  • Hyperbolic metric in terms of cross-ratio.
  • Elementary results in hyperbolic geometry.

Learning Outcomes

Subject-specific Knowledge:
  • By the end of the module students will: be able to solve novel and/or complex problems in Geometry.
  • have a systematic and coherent understanding of theoretical mathematics in the field of Geometry.
  • have acquired a coherent body of knowledge of these subjects demonstrated through one or more of the following topic areas: Isometries and affine transformations of the plane.
  • Spherical geometry.
  • Mobius transformations.
  • Projective geometry.
  • Hyperbolic geometry.
Subject-specific Skills:
  • In addition students will have specialised mathematical skills in the following areas which can be used with minimal guidance: Spatial awareness.
Key Skills:

    Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

    • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
    • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
    • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
    • The end-of-year examination assesses the knowledge acquired and the ability to solve unpredictable problems of some complexity.

    Teaching Methods and Learning Hours

    Activity Number Frequency Duration Total/Hours
    Lectures 40 2 per week for 19 weeks and 2 in term 3 1 Hour 40
    Problems Classes 8 Four in each of terms 1 and 2 1 Hour 8
    Preparation and Reading 152
    Total 200

    Summative Assessment

    Component: Examination Component Weighting: 100%
    Element Length / duration Element Weighting Resit Opportunity
    three hour written examination 100%

    Formative Assessment:

    Four written assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.


    Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University