Undergraduate Programme and Module Handbook 2017-2018 (archived)
Module CHEM4471: ADVANCED COMPUTATIONAL CHEMICAL PHYSICS
Department: Chemistry
CHEM4471: ADVANCED COMPUTATIONAL CHEMICAL PHYSICS
Type | Open | Level | 4 | Credits | 20 | Availability | Available in 2017/18 | Module Cap | Location | Durham |
---|
Tied to |
---|
Prerequisites
- EITHER Computational Chemistry (CHEM2061) OR Computational Chemical Physics (CHEM3151).
Corequisites
- None.
Excluded Combination of Modules
- Advanced Computational Chemistry (CHEM3071)
Aims
- To develop an advanced understanding of computational chemistry including specialised topics.
- To provide further practical experience in using computational methods to study molecules.
- To develop an understanding of important concepts in theoretical chemistry.
Content
- Molecular simulation.
- Numerical methods in quantum mechanics.
- Approximate methods: perturbation theory.
- Time dependent quantum mechanics.
- Angular momentum and spin theory.
- Density Functional theory.
- Practical computing.
Learning Outcomes
Subject-specific Knowledge:
- Explain the concepts of time-dependent quantum mechanics.
- Explain the use of numerical methods in quantum mechanics.
- Explain the principles and applications of density-functional theory.
- Understand the strengths and limitations of each technique studied.
Subject-specific Skills:
- Demonstrate a knowledge of additional computational chemistry packages, and be able to apply this knowledge to tackle current chemical research problems.
Key Skills:
- Group working, encouraged and developed through workshop teaching and the project;
- Analytical scientific writing skills through the use of essay type questions in lecture-support worksheets and the project;
- Problem-solving developed through workshops;
- Information retrieval and oral presentations, developed through the project;
- Application of number acquired through the calculations required in all components of this module.
Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module
- Lectures are used to convey concepts, demonstrate what is required to be learned and the application of the theory to practical examples. When appropriate, lectures will be supported by written material, or by information and relevant links on DUO.
- Private study should be used by students to develop their subject-specific knowledge and self-motivation, through reading textbooks and literature.
- Workshops are groups of students where problems are considered and common difficulties shared. This ensures that students have understood the work and can apply it to real life situations. These are formatively assessed.
- Students will be able to obtain further help in their studies by approaching their lecturers, either after lectures or at other mutually convenient times.
- Student performance will be summatively assessed through examinations. Examinations test students' ability to work under pressure under timed conditions, to prepare for examinations and direct their own programme of revision and learning, and develop key time management skills. The examination will provide the means for students to demonstrate the acquisition of subject knowledge and the development of their problem-solving skills.
- Computer classes give students the opportunity to learn to use off-the-shelf computer packages and those specific to chemists. They are continuously assessed so that the student can learn from one session to the next.
- A project applying computational techniques to a current research problem.
Teaching Methods and Learning Hours
Activity | Number | Frequency | Duration | Total/Hours | |
---|---|---|---|---|---|
Lectures | 20 | 1 per week | 1 Hour | 20 | |
Practicals | 12 | 1 per week | 2 Hour | 24 | ■ |
Workshops | 5 | 2 per term | 2 Hour | 10 | ■ |
Preparation and Reading | 146 | ||||
Total | 200 |
Summative Assessment
Component: Examination | Component Weighting: 70% | ||
---|---|---|---|
Element | Length / duration | Element Weighting | Resit Opportunity |
Written examination | Two hours | 100% | |
Component: Coursework | Component Weighting: 30% | ||
Element | Length / duration | Element Weighting | Resit Opportunity |
results of continuous assessment | 100% |
Formative Assessment:
Set work in preparation for workshops.
■ Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University