Durham University
Programme and Module Handbook

Undergraduate Programme and Module Handbook 2017-2018 (archived)

Module GEOL1061: MATHEMATICAL METHODS IN GEOSCIENCES

Department: Earth Sciences

GEOL1061: MATHEMATICAL METHODS IN GEOSCIENCES

Type Tied Level 1 Credits 20 Availability Available in 2017/18 Module Cap Location Durham
Tied to F600
Tied to F630
Tied to F643
Tied to F644
Tied to F662
Tied to CFG0
Tied to FGC0

Prerequisites

  • NOT available to students who have passed Mathematics AS level at grade B or above, or who have a comparable qualification in Mathematics.

Corequisites

  • None.

Excluded Combination of Modules

  • NOT available to students who have passed Mathematics AS level at grade B or above, or who have a comparable qualification in Mathematics.

Aims

  • To ensure that students on degree programmes in geosciences have an adequate background in mathematics and can apply their mathematical knowledge to the solution of problems in geosciences.

Content

  • Manipulation and solution of algebraic equations that relate geological variables.
  • Applications of trigonometry to geological problems.
  • Vectors.
  • Sketching graphs of simple functions.
  • Differentiation and integration of elementary functions of a single variable with geological applications.
  • Plotting data.
  • Basic statistical concepts: sampling, variance, random and systematic errors.

Learning Outcomes

Subject-specific Knowledge:
  • Students should be able to tackle applications of mathematics in the geosciences involving algebra, trigonometry, basic differential and integral calculus, plotting data, sampling and estimation of errors.
Subject-specific Skills:
    Key Skills:
    • Solve numerical problems using computer or non-computer techniques.

    Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

    • The module is delivered through a mix of lectures and tutorials.
    • The tutorials are allocated to dealing with students' difficulties in tackling the problems.
    • Summative assessment is 60% based on a 2-hour written examination and 40% based on continual assessment.

    Teaching Methods and Learning Hours

    Activity Number Frequency Duration Total/Hours
    Lectures 40 2 per week 1 Hour 40
    Tutorials 21 Weekly 1 Hour 21
    Preparation and Reading 139
    Total 200

    Summative Assessment

    Component: Examination Component Weighting: 60%
    Element Length / duration Element Weighting Resit Opportunity
    Unseen written examination 2 hours 100%
    Component: Continual Assessment Component Weighting: 40%
    Element Length / duration Element Weighting Resit Opportunity
    Class Tests 45 minutes each 100%

    Formative Assessment:

    Weekly problem sheets. Collections not required.


    Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University