Durham University
Programme and Module Handbook

Undergraduate Programme and Module Handbook 2017-2018 (archived)

Module MATH3341: Bayesian Statistics III

Department: Mathematical Sciences

MATH3341: Bayesian Statistics III

Type Open Level 3 Credits 20 Availability Available in 2017/18 Module Cap Location Durham

Prerequisites

  • Statistical Concepts II (MATH2041).

Corequisites

Excluded Combination of Modules

  • Bayesian Statistics IV (MATH4031)

Aims

  • To provide an overview of the theory and practice of Bayesian inference and Bayesian statistical modelling.

Content

  • Foundations of Bayesian modelling and inference: rationality, exchangeability, sufficiency, conjugacy.
  • Bayesian statistical modelling: hierarchical models, Bayesian networks, conditional independence.
  • Computation for Bayesian inference: Monte Carlo, Markov chain Monte Carlo, Gibbs sampling, Metropolis-Hastings.
  • Practicalities in Bayesian inference: prior distributions, interpretation and analysis of MCMC output, model comparison.

Learning Outcomes

Subject-specific Knowledge:
  • Awareness of a wide range of aspects of Bayesian statistics.
  • A systematic and coherent understanding of the theory, computation and application of the mathematics underlying the Bayesian approach to statistics.
  • Have acquired a coherent body of knowledge about the theoretical foundations underpinning the application of Bayesian statistical inference to scientific and other problems.
  • Have acquired a coherent body of knowledge about the practical application of Bayesian statistical methods.
Subject-specific Skills:
  • In addition students will have specialised mathematical skills in the following areas which can be used with minimal guidance: Modelling, Computation.
Key Skills:

    Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

    • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
    • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
    • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
    • The end-of-year examination assesses the knowledge acquired and the ability to solve complex and specialised problems.

    Teaching Methods and Learning Hours

    Activity Number Frequency Duration Total/Hours
    Lectures 40 2 per week for 19 weeks and 2 in term 3 1 40
    Problems Classes 8 Four in each of terms 1 and 2 1 Hour 8
    Preparation and Reading 152
    Total 200

    Summative Assessment

    Component: Examination Component Weighting: 100%
    Element Length / duration Element Weighting Resit Opportunity
    Written examination 3 hours 100% none

    Formative Assessment:

    Four written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.


    Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University