Durham University
Programme and Module Handbook

Undergraduate Programme and Module Handbook 2018-2019 (archived)

Module CHEM2061: COMPUTATIONAL CHEMISTRY

Department: Chemistry

CHEM2061: COMPUTATIONAL CHEMISTRY

Type Open Level 2 Credits 20 Availability Available in 2018/19 Module Cap Location Durham

Prerequisites

  • Core Chemistry 1 (CHEM1078) AND EITHER Mathematical and Experimental Tools required in Chemistry (CHEM1111) OR [Single Mathematics A (MATH1561) AND Single Mathematics B (MATH1571)] OR [Calculus and Probability I (MATH1061) AND Linear Algebra I (MATH1071)].

Corequisites

  • Chemistry of the Elements (CHEM2077) OR Structure and Reactivity in Organic Chemistry (CHEM2087) OR Properties of Molecules (CHEM2097) OR Inorganic Concepts and Applications (CHEM3097) OR Advanced Organic Chemistry (CHEM3117) OR Molecules and their Interactions (CHEM3137).

Excluded Combination of Modules

  • This module may not be taken before, with or after Computational Chemical Physics (CHEM3151). This module may not be taken in the same year of study as Biological Chemistry (CHEM2051).

Aims

  • To develop an understanding of the main areas of computational chemistry.
  • To provide practical experience in using computational methods to study molecules.
  • To develop an understanding of important concepts in theoretical chemistry.

Content

  • Force fields and simulation.
  • Potential energy surfaces and molecular mechanics.
  • Energy minimisation.
  • Molecular dynamics calculations.
  • Definition of the wave function.
  • The uncertainty principle.
  • Approximate methods: basis set expansions and the secular equations.
  • Electronic structure theory: Hartree-Fock equations.
  • Semi-Empirical methods.
  • Correlated methods.
  • Practical computing.

Learning Outcomes

Subject-specific Knowledge:
  • Explain the basic concepts of molecular force fields.
  • Explain the basic concepts of quantum mechanics, and be able to apply these concepts to simple chemical problems.
  • Explain the basic ideas of ab initio electronic structure theory.
  • Understand the strengths and limitations of each technique studied.
Subject-specific Skills:
  • Demonstrate a working knowledge of a range of important computational chemistry packages, and be able to apply this knowledge to tackle real chemical problems.
Key Skills:
  • Group working, encouraged and developed through workshop teaching.
  • Written communication advanced through the use of essay type questions in lecture-support worksheets.
  • Problem-solving developed through workshops.
  • Application of number, acquired through the calculations required in all components of this module.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures are used to convey concepts and are examined by written papers. This is the best method to assess the knowledge of the students.
  • Private study should be used by students to develop their subject-specific knowledge and self-motivation, through reading textbooks and literature.
  • Workshops are groups of students where problems are considered and common difficulties shared. This ensures that students have understood the work and can apply it to real life situations. These are formatively assessed.
  • Students will be able to obtain further help in their studies by approaching their lecturers, either after lectures or at other mutually convenient times.
  • Student performance will be summatively assessed through examinations. Examinations test students' ability to work under pressure under timed conditions, to prepare for examinations and direct their own programme of revision and learning, and develop key time management skills. The examination will provide the means for students to demonstrate the acquisition of subject knowledge and the development of their problem-solving skills.
  • Computer classes give students the opportunity to learn to use off the shelf computer packages and those specific to chemists. They are continuously assessed so that the student can learn from one session to the next.

Teaching Methods and Learning Hours

Activity Number Frequency Duration Total/Hours
Lectures 18 1 per week 1 Hour 18
Practicals 13 1 per week 2 Hour 26
Workshops 3 1 per term 2 Hour 6
Preparation and Reading 150
Total 200

Summative Assessment

Component: Examination Component Weighting: 70%
Element Length / duration Element Weighting Resit Opportunity
Written examination Two hours 100% Two hour written examination
Component: Coursework Component Weighting: 30%
Element Length / duration Element Weighting Resit Opportunity
results of continuous assessment 100% 1 hour written examination

Formative Assessment:

Set work in preparation for workshops.


Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University