Undergraduate Programme and Module Handbook 2018-2019 (archived)

# Module MATH3371: REPRESENTATION THEORY III

## Department: Mathematical Sciences

### MATH3371: REPRESENTATION THEORY III

Type | Open | Level | 3 | Credits | 20 | Availability | Not available in 2018/19 | Module Cap | Location | Durham |
---|

#### Prerequisites

- Algebra II (MATH2581).

#### Corequisites

- None.

#### Excluded Combination of Modules

- Representation Theory IV (MATH4241).

#### Aims

- To develop and illustrate representation theory for finite groups and Lie groups.

#### Content

- Representations of finite groups.
- Character theory.
- Modules over group algebra.
- Lie groups and Lie algebras and their representations.
- Representations of SL(2,C), SU(2), SO(3).

#### Learning Outcomes

Subject-specific Knowledge:

- By the end of the module students will: be able to solve novel and/or complex problems in Representation Theory.
- have a systematic and coherent understanding of theoretical mathematics in the field of Representation Theory.
- have acquired a coherent body of knowledge of these subjects demonstrated through one or more of the following topic areas: Representations of finite groups.
- Character tables.
- Induced representations, Frobenius reciprocity.
- Representations of abelian groups.
- Lie groups and algebras, exponential map.
- Examples of representations of Lie groups and algebras.

Subject-specific Skills:

- In addition students will have specialised mathematical skills in the following areas which can be used with minimal guidance: Abstract Reasoning.

Key Skills:

#### Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

- Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
- Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
- Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
- The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

#### Teaching Methods and Learning Hours

Activity | Number | Frequency | Duration | Total/Hours | |
---|---|---|---|---|---|

Lectures | 42 | 2 per week for 20 weeks and 2 in term 3. | 1 Hour | 42 | |

Problems Classes | 8 | Four in each of terms 1 and 2 | 1 Hour | 8 | |

Preparation and Reading | 150 | ||||

Total | 200 |

#### Summative Assessment

Component: Examination | Component Weighting: 100% | ||
---|---|---|---|

Element | Length / duration | Element Weighting | Resit Opportunity |

Written examination | 3 Hours | 100% |

#### Formative Assessment:

Eight written assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.

■ Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University