Durham University
Programme and Module Handbook

Undergraduate Programme and Module Handbook 2019-2020 (archived)

Module MATH4341: Spatio-Temporal Statistics

Department: Mathematical Sciences

MATH4341: Spatio-Temporal Statistics

Type Open Level 4 Credits 20 Availability Not available in 2019/20 Module Cap Location Durham

Prerequisites

  • Advanced Statistical Modelling (MATH3411) OR Bayesian Computation and Modelling (MATH3421)

Corequisites

  • None

Excluded Combination of Modules

  • None

Aims

  • To introduce the theory, computation and practice of the statistical analysis of problems involving aspects of space and time

Content

  • Spatial statistics: Spatial point processes; Spatial regression; Covariance and correlation functions; Gaussian processes.
  • Temporal statistics and time series: Components and properties of time series; Local and moving-average methods; Forecasting and inference; State-space models.

Learning Outcomes

Subject-specific Knowledge:
  • By the end of the module students will:
  • Be aware of a wide range of applicable statistical methodology for spatio-temporal problems.
  • Be able to construct statistical models for data with spatial and/or temporal properties
  • Have a systematic and coherent understanding of the theory, computation and application of the mathematics underlying the statistical topics and models studied.
  • Have acquired a coherent body of applicable knowledge on spatial and temporal statistics.
Subject-specific Skills:
  • Students will have specialised statistical skills in the following areas which can be used with minimal guidance: Modelling, Computation.
Key Skills:
  • Students will be able to study independently to further their knowledge of advanced statistical modelling.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Problem classes show how to solve example problems in an ideal way, revealing also the thought processes behind such solutions.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formative assessments provide feedback to guide students in the correct development of their knowledge and skills in preparation for the summative assessment.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

Teaching Methods and Learning Hours

Activity Number Frequency Duration Total/Hours
Lectures 42 2 per week for 21 weeks 1 hour 42
Problem classes 8 Four in each of terms 1 and 2 1 hour 8
Preparation and reading 150
Total 200

Summative Assessment

Component: Examination Component Weighting: 100%
Element Length / duration Element Weighting Resit Opportunity
Written Examination 3 hours 100%

Formative Assessment:

• Eight written or electronic assignments to be assessed and returned. • Other assignments are set for self-study and complete solutions are made available to students.


Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University