Durham University
Programme and Module Handbook

Postgraduate Programme and Module Handbook 2024-2025

Module MATH41420: Solitons

Department: Mathematical Sciences

MATH41420: Solitons

Type Tied Level 4 Credits 20 Availability Available in 2024/2025 Module Cap None.
Tied to G1K509

Prerequisites

  • Complex Analysis and Analysis in Many Variables.

Corequisites

  • None

Excluded Combination of Modules

  • None

Aims

  • To provide an introduction to solvable problems in nonlinear partial differential equations which have a physical application.
  • This is an area of comparatively recent development which still possesses potential for growth.

Content

  • Nonlinear wave equations.
  • Progressive wave solutions.
  • Backlund transformations for Sine Gordon equation.
  • Backlund transformations for KdV equation.
  • Conservation laws integrable systems.
  • Hirota's method.
  • The Nonlinear Schrodinger equation.
  • The inverse scattering method.
  • The inverse scattering method: two component equations.
  • Toda equations.
  • Integrability.

Learning Outcomes

Subject-specific Knowledge:
  • By the end of the module students will:
  • be able to solve complex, unpredictable and specialised problems in Solitons.
  • have an understanding of specialised and complex theoretical mathematics in the field of Solitons.
  • have mastered a coherent body of knowledge of these subjects demonstrated through one or more of the following topic areas:
  • Nonlinear wave equations.
  • Progressive wave equations.
  • Backlund transformations for the sine-Gordon equation and the KdV equation.
  • Conservation laws in integrable systems.
  • Hirota's method.
  • The nonlinear Schrodinger equation.
Subject-specific Skills:
  • In addition students will have highly specialised and advanced mathematical skills in the following areas: Modelling, Spatial awareness.
Key Skills:

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve complex and specialised problems.

Teaching Methods and Learning Hours

Activity Number Frequency Duration Total/Hours
Lectures 42 2 per week for 20 weeks and 2 in term 3 1 Hour 42
Problems Classes 8 four in each of terms 1 and 2 1 Hour 8
Preparation and Reading 150
Total 200

Summative Assessment

Component: Examination Component Weighting: 100%
Element Length / duration Element Weighting Resit Opportunity
Written examination 3 hours 100%

Formative Assessment:

Eight written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.


Attendance at all activities marked with this symbol will be monitored. Students who fail to attend these activities, or to complete the summative or formative assessment specified above, will be subject to the procedures defined in the University's General Regulation V, and may be required to leave the University